1,184 research outputs found

    Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver

    Get PDF
    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver

    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination

    Get PDF
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited

    microRNA-141 as a diagnostic and prognos- tic biomarker for prostate cancer in Egyptian population: Pilot study

    Get PDF
    Introduction: microRNAs are a family of small non protein-coding RNAs. They are involved in posttranscriptional gene regulation of their target genes. The deregulation of microRNAs has been linked to cancer development and tumor progression. The aim of out study was to look for microRNA-141 as a diagnostic and prognostic biomarker for prostate cancer.Patients and methods: The study prospectively recruited 30 patients newly diagnosed with prostate cancer; including 13 and 17 patients without and with metastases, respectively. Another 30 patients without prostate cancer diagnosis were included as a control group. Real-time polymerase chain reaction analysis was done for relative quantification of microRNA-141.Results: The present study showed that microRNA-141 was significantly upregulated in cancerous patients compared to control group. Also it was significantly upregulated in patients with metastatic disease compared to non-metastatic patients. Moreover, it was significantly correlating with serum PSA and Gleason score.Conclusion: Serum microRNA-141 could be a promising diagnostic and prognostic biomarker for prostate cancer and a good indicative of disease aggressiveness

    Chaos induced coherence in two independent food chains

    Full text link
    Coherence evolution of two food web models can be obtained under the stirring effect of chaotic advection. Each food web model sustains a three--level trophic system composed of interacting predators, consumers and vegetation. These populations compete for a common limiting resource in open flows with chaotic advection dynamics. Here we show that two species (the top--predators) of different colonies chaotically advected by a jet--like flow can synchronize their evolution even without migration interaction. The evolution is charaterized as a phase synchronization. The phase differences (determined through the Hilbert transform) of the variables representing those species show a coherent evolution.Comment: 5 pages, 5 eps figures. Accepted for publication in Phys. Rev.

    Stress evolution in plastically deformed austenitic and ferritic steels determined using angle- and energy-dispersive diffraction

    Full text link
    In the presented research, the intergranular elastic interaction and the second-order plastic incompatibility stress in textured ferritic and austenitic steels were investigated by means of diffraction. The lattice strains were measured inside the samples by the multiple reflection method using high energy X-rays diffraction during uniaxial in situ tensile tests. Comparing experiment with various models of intergranular interaction, it was found that the Eshelby-Kr\"oner model correctly approximates the X-ray stress factors (XSFs) for different reflections hkl and scattering vector orientations. The verified XSFs were used to investigate the evolution of the first and second-order stresses in both austenitic and ferritic steels. It was shown that considering only the elastic anisotropy, the non-linearity of sin2ψ\sin^2{\psi} plots cannot be explained by crystallographic texture. Therefore, a more advanced method based on elastic-plastic self-consistent modeling (EPSC) is required for the analysis. Using such methodology the non-linearities of cos2ϕ\cos^2{\phi} plots were explained, and the evolutions of the first and second-order stresses were determined. It was found that plastic deformation of about 1- 2% can completely exchange the state of second-order plastic incompatibility stresses

    Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

    Get PDF
    Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. Doi: 10.28991/ESJ-2023-07-04-025 Full Text: PD

    Identification of Optimal Frequencies to Determine Alpha-Cypermethrin using Machine Learning Feature Selection Techniques

    Get PDF
    Machine learning feature space reduction techniques allow for vast feature spaces to be reduced with little loss or even significant improvements in the reliability of predictions of models. Microwave spectroscopy with feature spaces of over 8000 are not uncommon when considering magnitude and phase. Applying Machine learning techniques to this type of feature space allows for a quicker reduction and helps to identify the most suitable predictive features. The control of insect vectors that transmit diseases including malaria, visceral leishmaniasis and zika rely on the use of insecticide. These diseases affect millions, malaria alone accounted for 214 million new cases resulting in 438, 000 deaths in 2015. One method used in controlling the vectors is through indoor residual spraying, applying insecticide to the wall surface inside houses. Alpha-cypermethrin is one of the insecticides that is currently sprayed in several countries for vector control. Quality assurance and monitoring of the control activities is challenging relying on the use of laboratory-reared insects. This was improved with a chemical based Insecticide Quantification Kit, but these assays have been challenging to operationalise. An electromagnetic sensor is being developed to investigate the potential to detect alpha-cypermethrin. Preliminary experiments were carried out to differentiate tiles sprayed with Technical Grade alpha-cypermethrin, wettable powder containing 5% alpha-cypermethrin and wettable powder with over dose of alpha-cypermethrin using a horn antenna at a frequency range between 1 GHz to 6 GHz. The experimental results indicated the potential use of electromagnetic waves to determine alpha-cypermethrin in a non-destructive manner

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742
    corecore